
SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

Customer: Lucidao
Date: 17 October, 2023



This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Lucidao

Approved By Grzegorz Trawiński | Solidity SC Lead Auditor at Hacken OÜ

Tags ERC20; ERC721; Lending

Platform EVM

Language Solidity

Methodology Link

Website https://lucidao.com

Changelog 04.10.2023 – Initial Review
17.10.2023 - Second Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://lucidao.com


Table of contents
Introduction 4
System Overview 4
Executive Summary 5
Risks 6
Checked Items 7
Findings 10

Critical 10
High 10

H01. LiquidationFee and GraceFee Miss Percentage Divisor 10
Medium 12

M01. GraceFee Is Applied on Top of Other Fees 12
M02. Solution Does Not Support Inclusive fee-on-transfer 14
M03. Blacklisted Lender May Prevent Debt Payoff and Liquidation 15
M04. OriginationFeeRanges Does Not Support Multiple Lending Tokens 17
M05. Collateral Valuation Is Not Checked Within acceptLoan() Function 18
M06. IPriceIndex Serves Single Value Without Normalization 20

Low 21
L01. Allowed Tokens Are Checked Too Early in the Lending Process 21
L02. Solution Does Not Support Non-standard ERC721 Tokens 22
L03. OnERC721Received Hook Does Not Check Token Ownership 23
L04. FeeReductionFactor Can Be Set to 0 24
L05. OriginationFeeRanges Collection Lacks Input Validation 25
L06. ERC20 Zero Amount Transfers Possible 26

Informational 27
I01. NFT Tokens Are Not Whitelisted 27
I02. Inconsistent Usage of PRBMath Library 27
I03. Floating Pragma 29
I04. Solidity Style Guide Violation 29
I05. Functions that Should Be External 30
I06. Constant Accuracy Mismatch 30
I07. Gas Optimisation Possible in for Loops 31

Disclaimers 33
Appendix 1. Severity Definitions 34

Risk Levels 34
Impact Levels 35
Likelihood Levels 35
Informational 35

Appendix 2. Scope 36

www.hacken.io
3



Introduction

Hacken OÜ (Consultant) was contracted by Lucidao (Customer) to conduct a
Smart Contract Code Review and Security Analysis. This report presents the
findings of the security assessment of the Customer's smart contracts.

System Overview

Lucidao is a lending protocol with the following contracts:
● Lending — a contract that allows users to request loans by depositing

NFTs as collateral and other users to fulfill the request by
depositing the desired tokens. If the loan is not paid back by the
borrower before the deadline the lender can either withdraw the NFTs
or any other user is able to liquidate the loan, by depositing the
tokens back to the lender and leaving with the NFTs.

Privileged roles
● The owner of the Lending contract can arbitrarily modify the price

index address, governance treasury address, repay grace period, repay
grace fee, protocol fee, liquidation fee, base origination fee,
whitelisted tokens, loan types/interest rates, fee reduction factor
and origination fee ranges.

www.hacken.io
4



Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 7 out of 10.

● Functional requirements are partially provided.
○ Business logic is not provided.
○ Use cases are not provided.

● Technical description is provided.

Code quality
The total Code Quality score is 10 out of 10.

Test coverage
Code coverage of the project is 100% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● All protocol features and cases are covered with tests.

Security score
As a result of the audit, the code contains 1 medium severity issue. The
security score is 9 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.5. The system users should acknowledge all the risks
summed up in the risks section of the report.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

4 October 2023 6 6 1 0

17 October 2023 0 1 0 0

www.hacken.io
5

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing


Risks

● The correct valuation of the assets depends on the data provided by
external sources (e.g the PriceIndex contract). The owner is able to
arbitrarily change the trusted price index address.

www.hacken.io
6



Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables
visibility should be set explicitly.
Visibility levels should be specified
consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from
overflows and underflows.

Not
Relevant

Outdated
Compiler
Version

It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked
Call Return
Value

The return value of a message call
should be checked. Not

Relevant

Access
Control &
Authorization

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Not
Relevant

Check-Effect-
Interaction

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses. Not

Relevant

DoS (Denial
of Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

www.hacken.io
7



Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization. Passed

Block values
as a proxy
for time

Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should
not be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery. EIP-712 should
be followed during a signer
verification.

Not
Relevant

Shadowing
State
Variable

State variables should not be shadowed.
Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be
predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or
be locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third
party should not be able to access
funds belonging to users.

Passed

Data
Consistency

Smart contract data should be
consistent all over the data flow. Passed

www.hacken.io
8

https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps


Flashloan
Attack

When working with exchange rates, they
should be received from a trusted
source and not be vulnerable to
short-term rate changes that can be
achieved by using flash loans. Oracles
should be used. Contracts shouldn’t
rely on values that can be changed in
the same transaction.

Passed

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Not
Relevant

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should
be followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure
Oracles Usage

The code should have the ability to
pause specific data feeds that it
relies on. This should be done to
protect a contract from compromised
oracles.

Passed

Tests
Coverage

The code should be covered with unit
tests. Test coverage should be
sufficient, with both negative and
positive cases covered. Usage of
contracts by multiple users should be
tested.

Passed

Stable
Imports

The code should not reference draft
contracts, which may be changed in the
future.

Passed

www.hacken.io
9



Findings

Critical

No critical severity issues were found.

High

H01. LiquidationFee and GraceFee Miss Percentage Divisor

Impact High

Likelihood Medium

The Lending solution applies multiple various fees during loan
repayment. The GraceFee is applied whenever the borrower attempts to
pay off the loan during the grace period. Alternatively, the
LiquidationFee is applied whenever the liquidator attempts to
liquidate the overdue loan. However, both of these fees are missing
the percentage divisor in the calculation formula. As a consequence,
in both cases the payer must pay an overestimated value of tokens.

GraceFee calculation within repayLoan() function.

if (block.timestamp > loan.startTime + loan.duration) {

platformFee += (totalPayable * repayGraceFee) / PRECISION;

}

function getLiquidationFee(uint256 _borrowedAmount) public view returns

(uint256) {

return (_borrowedAmount * liquidationFee) / PRECISION;

}

In contrast, the OriginationFee and ProtocolFee are divided by 100 in
their calculations.

Based on the unit tests from the Lending.t.sol file, the GraceFee
should be 2.5% whereas the LiquidationFee should be 5%, but actual
applied fees are 250% and 500% respectively.

Proof of Concept:

Instance 1 - grace fee:

1. As a deployer, deploy the solution. Set the USDT token as a
lending token. Set any ERC721 as NFT collateral. Set the grace
period for 5 days. Set the grace fee to 25000, which represents
2.5%.

www.hacken.io
10



2. As a borrower requestLoan for 100e6 USDT tokens with any NFT as
collateral.

3. As a lender acceptLoan.

4. Forward blockchain time for the period of loan duration and 4
days, so the time is within the grace period.

5. As a borrower repayLoan. Observe the USDT’s balances. Note that
the treasury received platform fee and overestimated grace fee,
which is equal to around 299e6 of USDT tokens.

Instance 2 - liquidation fee:

1. As a deployer, deploy the solution. Set the USDT token as a
lending token. Set any ERC721 as NFT collateral. Set the grace
period for 5 days. Set the liquidation fee to 50000, which
represents 5%.

2. As a borrower requestLoan for 100e6 USDT tokens with any NFT as
collateral.

3. As a lender acceptLoan.

4. Forward blockchain time for the period of loan duration and 6
days, so the time is within the liquidation period.

www.hacken.io
11



5. As a liquidator liquidateLoan. Observe the USDT’s balances.
Note that the treasury received platform fee and overestimated
liquidation fee, which is equal to around 502e6 of USDT tokens.

Path: ./src/Lending.sol: repayLoan(), getLiquidationFee()

Recommendation: It is recommended to apply percentage division in
every fee applied across the solution.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: Every occurrence of the percentage division is now
removed from the code. All configuration input data must now be
provided with normalized values with the reference PRECISION constant
set to 10000. E.g. 4% fee is now represented as a value of 400.

Medium

M01. GraceFee Is Applied on Top of Other Fees

Impact Low

Likelihood High

The Lending solution applies multiple various fees during loan
repayment. The GraceFee is applied whenever the borrower attempts to
pay off the loan during the grace period. However, the GraceFee is
applied after calculating the totalPayable, which represents the loan
amount, accumulated interest and origination fee. Thus, it includes
additional value accrued from already charged interest and
origination fee.

In contrast, the LiquidationFee is calculated based only on the loan
amount.

function repayLoan(uint256 _loanId) external nonReentrant {

Loan storage loan = loans[_loanId];

require(loan.borrower != address(0) && loan.lender != address(0), "Lending:

www.hacken.io
12



invalid loan id");

require(!loan.paid, "Lending: loan already paid");

require(block.timestamp < loan.startTime + loan.duration +

repayGracePeriod, "Lending: too late");

uint256 totalPayable = loan.amount

+ getDebtWithPenalty(

loan.amount, loan.interestRate + protocolFee, loan.duration,

block.timestamp - loan.startTime

) + getOriginationFee(loan.amount);

uint256 lenderPayable = loan.amount

+ getDebtWithPenalty(loan.amount, loan.interestRate, loan.duration,

block.timestamp - loan.startTime);

uint256 platformFee = totalPayable - lenderPayable;

loan.paid = true;

IERC20(loan.token).safeTransferFrom(msg.sender, loan.lender,

lenderPayable);

if (block.timestamp > loan.startTime + loan.duration) {

platformFee += (totalPayable * repayGraceFee) / PRECISION;

}

IERC20(loan.token).safeTransferFrom(msg.sender, governanceTreasury,

platformFee);

IERC721(loan.nftCollection).safeTransferFrom(address(this), loan.borrower,

loan.nftId);

emit LoanRepayment(_loanId, lenderPayable + platformFee, platformFee);

}

Proof of Concept: n/a

Path: ./src/Lending.sol: repayLoan()

Recommendation: It is recommended to verify whether grace fee should
be applied on top of all fees or only on borrowed amount.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: Grace fee is no more applied on top of protocol fee and
origination fee. However, it is applied on top of borrowed amount and
interest accrued.

www.hacken.io
13



M02. Solution Does Not Support Inclusive fee-on-transfer

Impact High

Likelihood Low

The Lending solution uses ERC20 tokens for borrowing and repayment.
However, it was identified that it does not support inclusive
fee-on-transfer tokens. Fee-on-transfer tokens apply a small fee
during the transfer, which is usually consumed by the protocol
provider. Thus, the receiver may receive a decreased amount than
originally declared prior to transfer.

Within the Lending solution it may manifest itself as inaccurate
accounting between the value declared in the loan and the actual
value received by the borrower.

In the Ethereum ecosystem DGX and CGT are examples of fee-on-transfer
tokens. On Ethereum, the USDT stablecoin also has the fee feature
implemented, which is disabled at the time of writing. On the
Polygon,the USDT token is deployed as upgradeable.

function acceptLoan(uint256 _loanId) external nonReentrant {

Loan storage loan = loans[_loanId];

require(loan.borrower != address(0) && loan.lender == address(0), "Lending:

invalid loan id");

require(!loan.cancelled, "Lending: loan cancelled");

require(loan.deadline > block.timestamp, "Lending: loan acceptance deadline

passed");

loan.lender = msg.sender;

loan.startTime = block.timestamp;

IERC20(loan.token).safeTransferFrom(msg.sender, loan.borrower,

loan.amount);

IERC721(loan.nftCollection).safeTransferFrom(loan.borrower, address(this),

loan.nftId);

emit LoanAccepted(_loanId, loan.lender, loan.startTime);

}

Proof of Concept:

1. By means of the favorite testing framework fork Ethereum
blockchain.

www.hacken.io
14



2. As a deployer, deploy the solution. Set the USDT token as a
lending token.

3. As USDT token owner setup fee-on-transfer feature.
4. As a borrower requestLoan for 100e6 USDT tokens with any NFT as

collateral.
5. As a lender acceptLoan. Observe the USDT’s balances. Note that

the borrower received less tokens than agreed in the loan
agreement.

Path: ./src/Lending.sol: acceptLoan(), repayLoan(), liquidateLoan()

Recommendation: It is recommended to identify the exact amount
received by the receiver as a difference between the token balance
before and after the transfer transaction is made.

Found in: 6460ac1

Status: Mitigated

Remediation: The client’s team acknowledged this finding and provided
some mitigation off-chain. The inclusive fee-on-transfer scenario is
now documented in the client’s FAQ. Also, it is being considered to
add Transaction Simulator to solution’s frontend to help end users
better understand the outcomes before confirming transactions.

M03. Blacklisted Lender May Prevent Debt Payoff and Liquidation

Impact High

Likelihood Low

The Lending solution allows lender to lend an amount of tokens to the
borrowers, which should be paid off within the time of loan duration
or grace period. Based on the unit tests from the Lending.t.sol file,
the loan duration can be set up to 18 months. Also, the solution’s
owner can whitelist lending tokens by means of the setTokens()
function. The USDC stablecoin has a blacklist feature implemented for
both transfer sender and receiver, preventing blacklisted users from
the protocol usage. Assuming that USDC is allowed to lend in the
solution, in rare cases, the blacklisted lender may prevent debt
payoff and liquidation. In such case, the borrower will not be
capable of paying back the loan and collecting the NFT collateral.

The USDT stablecoin has a blacklist feature implemented as well, but
it is applicable only for the sender, not for the receiver.

www.hacken.io
15

https://docs.lucidao.com/dapps/altr-lending/faq
https://tenderly.co/transaction-simulator


The deployment of native USDC stablecoin on Polygon is planned on
10th of October, 2023.

function repayLoan(uint256 _loanId) external nonReentrant {

Loan storage loan = loans[_loanId];

require(loan.borrower != address(0) && loan.lender != address(0), "Lending:

invalid loan id");

require(!loan.paid, "Lending: loan already paid");

require(block.timestamp < loan.startTime + loan.duration +

repayGracePeriod, "Lending: too late");

uint256 totalPayable = loan.amount

+ getDebtWithPenalty(

loan.amount, loan.interestRate + protocolFee, loan.duration,

block.timestamp - loan.startTime

) + getOriginationFee(loan.amount);

uint256 lenderPayable = loan.amount

+ getDebtWithPenalty(loan.amount, loan.interestRate, loan.duration,

block.timestamp - loan.startTime);

uint256 platformFee = totalPayable - lenderPayable;

loan.paid = true;

IERC20(loan.token).safeTransferFrom(msg.sender, loan.lender,

lenderPayable);

if (block.timestamp > loan.startTime + loan.duration) {

platformFee += (totalPayable * repayGraceFee) / PRECISION;

}

IERC20(loan.token).safeTransferFrom(msg.sender, governanceTreasury,

platformFee);

IERC721(loan.nftCollection).safeTransferFrom(address(this), loan.borrower,

loan.nftId);

emit LoanRepayment(_loanId, lenderPayable + platformFee, platformFee);

}

Proof of Concept:

1. By means of the favorite testing framework fork Ethereum
blockchain.

2. As a deployer, deploy the solution. Set the USDC token as a
lending token.

www.hacken.io
16



3. As a borrower requestLoan for 100e6 USDC tokens with any NFT as
collateral.

4. As a lender acceptLoan.
5. As the USDC token owner blacklists the lender account.
6. As a borrower, attempt to repayLoan. Observe that the

transaction reverts with Blacklistable: account is blacklisted
error message.

Path: ./src/Lending.sol: repayLoan(), liquidateLoan()

Recommendation: It is recommended to implement a failover mechanism,
which will transfer lender’s fund into the escrow account, in case of
any issues with fund transferring, such as blacklisting of the user.

Found in: 6460ac1

Status: Fixed (Revised commits: 7c2e10, b1af05)

Remediation: The failover mechanism is now implemented. Whenever
transfer fails, the lender’s tokens are transferred to the Lender
contract. Then, the lender can retrieve such tokens by means of the
withdrawStuckToken() function.

M04. OriginationFeeRanges Does Not Support Multiple Lending Tokens

Impact High

Likelihood Low

The Lending solution applies multiple various fees during loan
repayment including OriginationFee. The OriginationFee is scaled
based on the OriginationFeeRanges and the feeReductionFactor. The
algorithm compares the loan amount directly with the fixed values set
in origination fee ranges to determine whether the reduction is
applicable.

This limitation makes the solution to use only tokens with the same
value and decimal points, otherwise the OriginationFee may be
calculated incorrectly.

The USDT and USDC stablecoins are redeemable 1:1 for US dollars and
they have set 6 decimal points. In contrast, the DAI stablecoin has

www.hacken.io
17



the same value, but it has set 18 decimal points. Alternatively, the
wrapped ETH token has significantly higher value than mentioned above
stablecoins.

function getOriginationFee(uint256 _amount) public view returns (uint256) {

uint256 originationFee = baseOriginationFee;

for (uint256 i = 0; i < originationFeeRanges.length; i++) {

if (_amount < originationFeeRanges[i]) {

break;

} else {

originationFee = (originationFee * PRECISION) / feeReductionFactor;

}

}

return (_amount * originationFee) / 100 / PRECISION;

}

Proof of Concept: n/a

Path: ./src/Lending.sol: repayLoan(), liquidateLoan()

Recommendation: It is recommended to normalize the value presented
within OriginationFeeRanges parameter to the type and value of
lending token, before doing the actual comparison within the
getOriginationFee() function.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: The OriginationFeeRanges represents now not normalized
value, which is multiplied by the borrowed token decimals points
within the getOriginationFee() function.

M05. Collateral Valuation Is Not Checked Within acceptLoan() Function

Impact Medium

Likelihood Medium

The Lending solution allows for borrowing the lending token from the
lenders. To start a loan, the borrower must firstly call
requestLoan() to set up loan terms, including the loan request’s
deadline. Within this function, the NFT value is checked with the
IPriceIndex contract. Then, the lender must call acceptLoan() to
start the loan and transfer the funds. However, in between of these
two function calls, the NFT value can be decreased, making the
collateral worth less than initially assumed, assuming that records
in IPriceIndex are frequently updated.

www.hacken.io
18



function requestLoan(

address _token,

uint256 _amount,

address _nftCollection,

uint256 _nftId,

uint256 _duration,

uint256 _deadline

) external nonReentrant {

require(allowedTokens[_token], "Lending: borrow token not allowed");

require(aprFromDuration[_duration] != 0, "Lending: invalid duration");

require(_amount > 0, "Lending: borrow amount must be greater than zero");

require(_deadline > block.timestamp, "Lending: deadline must be after

current timestamp");

IPriceIndex.Valuation memory valuation =

priceIndex.getValuation(_nftCollection, _nftId);

require(_amount <= (valuation.price * valuation.ltv) / 100, "Lending:

amount greater than max borrow");

Loan storage loan = loans[++lastLoanId];

loan.borrower = msg.sender;

loan.token = _token;

loan.amount = _amount;

loan.nftCollection = _nftCollection;

loan.nftId = _nftId;

loan.duration = _duration;

loan.collateralValue = valuation.price;

loan.interestRate = aprFromDuration[_duration];

loan.paid = false;

loan.deadline = _deadline;

loan.cancelled = false;

emit LoanCreated(

lastLoanId,

loan.borrower,

loan.token,

loan.amount,

loan.nftCollection,

loan.nftId,

loan.duration,

loan.interestRate,

loan.collateralValue,

loan.deadline

);

}

www.hacken.io
19



Path: ./contracts/contract.sol : requestLoan(), acceptLoan()

Recommendation: It is recommended to perform additional verification
of NFT price valuation within the acceptLoan() function to check,
whether the loan value is still adequate.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: The NFT collateral value is now checked in both
requestLoan() and acceptLoan() functions.

M06. IPriceIndex Serves Single Value Without Normalization

Impact Medium

Likelihood Medium

The Lending solution allows for borrowing the lending token with the
collateral in the form of a valuable NFT token. The solution is
designed to support multiple lending tokens, if only whitelisted by
the solution's owner. Within the requestLoan() function, the NFT
value is checked with the IPriceIndex contract. However, this
contract neither does require any information about ERC20 token used
for valuation nor it provides such information in the returned
struct. Thus, it can be assumed that it returns the valuation in a
single predefined off-chain cryptocurrency. This might lead to
incorrect value comparison results, e.g. when an amount of
whitelisted DAI (18 decimals) lending token is compared with
collateral valuated in USDT (6 decimals) stablecoin. Ultimately, it
may lead to the situation that the loan is under- or
over-collateralized.

interface IPriceIndex {

struct Valuation {

uint256 timestamp;

uint256 price;

uint256 ltv;

}

function getValuation(address nftCollection, uint256 tokenId) external view

returns (Valuation calldata valuation);

}

Path: ./contracts/contract.sol : requestLoan()

www.hacken.io
20



Recommendation: It is recommended to either normalize the value
provided by the IPriceIndex contract to the lending token or redesign
the IPriceIndex solution to return valuation in requested ERC20
token.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: The IPriceIndex contract now returns not normalized
value, which is multiplied by the borrowed token decimals points for
collateral value verification.

Low

L01. Allowed Tokens Are Checked Too Early in the Lending Process

Impact Low

Likelihood Low

The Lending solution allows for borrowing the lending token from the
lenders. The solution’s owner must whitelist lending tokens by means
of the setTokens() function prior to usage. To start a loan, the
borrower must firstly call requestLoan() to set up loan terms. Within
this function, the lending token is checked against the allowedTokens
collection. Then, the lender must call acceptLoan() to start the loan
and transfer the funds. However, in between of these two function
calls, the solution’s owner may revoke lending token whitelisting
with the unsetTokens() function due to any reason, including security
incidents. Thus, the requested loan can still be accepted before the
deadline with obsolete token, which might lead to uncertain issues.

function requestLoan(

address _token,

uint256 _amount,

address _nftCollection,

uint256 _nftId,

uint256 _duration,

uint256 _deadline

) external nonReentrant {

require(allowedTokens[_token], "Lending: borrow token not allowed");

require(aprFromDuration[_duration] != 0, "Lending: invalid duration");

require(_amount > 0, "Lending: borrow amount must be greater than zero");

require(_deadline > block.timestamp, "Lending: deadline must be after

current timestamp");

IPriceIndex.Valuation memory valuation =

priceIndex.getValuation(_nftCollection, _nftId);

www.hacken.io
21



require(_amount <= (valuation.price * valuation.ltv) / 100, "Lending:

amount greater than max borrow");

Loan storage loan = loans[++lastLoanId];

loan.borrower = msg.sender;

loan.token = _token;

loan.amount = _amount;

loan.nftCollection = _nftCollection;

loan.nftId = _nftId;

loan.duration = _duration;

loan.collateralValue = valuation.price;

loan.interestRate = aprFromDuration[_duration];

loan.paid = false;

loan.deadline = _deadline;

loan.cancelled = false;

emit LoanCreated(

lastLoanId,

loan.borrower,

loan.token,

loan.amount,

loan.nftCollection,

loan.nftId,

loan.duration,

loan.interestRate,

loan.collateralValue,

loan.deadline

);

}

Path: ./contracts/contract.sol : requestLoan(), acceptLoan()

Recommendation: It is recommended to perform additional validation of
the lending token within the acceptLoan() function.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: The lending token validation is now performed within the
acceptLoan() function as well.

L02. Solution Does Not Support Non-standard ERC721 Tokens

Impact Low

Likelihood Low

www.hacken.io
22



The Lending solution allows for borrowing the lending token with the
collateral in the form of a valuable NFT token. The NFT token is
transferred to the Lending contract within the acceptLoan() function.
This functionality assumes that the selected NFT token implements
OpenZepplin’s IERC721 interface and the safeTransferFrom() function
in particular, which might not necessarily be true. CryptoPunks and
CryptoKitties are examples of non-standard NFT tokens that do not
support this particular IERC721 interface. Therefore, such NFTs
cannot be used as a collateral within the Lending solution.

function acceptLoan(uint256 _loanId) external nonReentrant {

Loan storage loan = loans[_loanId];

require(loan.borrower != address(0) && loan.lender == address(0), "Lending:

invalid loan id");

require(!loan.cancelled, "Lending: loan cancelled");

require(loan.deadline > block.timestamp, "Lending: loan acceptance deadline

passed");

loan.lender = msg.sender;

loan.startTime = block.timestamp;

IERC20(loan.token).safeTransferFrom(msg.sender, loan.borrower,

loan.amount);

IERC721(loan.nftCollection).safeTransferFrom(loan.borrower, address(this),

loan.nftId);

emit LoanAccepted(_loanId, loan.lender, loan.startTime);

}

Path: ./contracts/contract.sol : repayLoan(), acceptLoan(),
claimNFT(), liquidateLoan()

Recommendation: It is recommended to consider implementing ERC721
transfer mechanism that covers a broader range of available NFTs.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: The requestLoan() function now implements additional
assertion that enforces the NFT collateral to implement the IERC721
interface, to ensure that it is compliant with ERC721.

L03. OnERC721Received Hook Does Not Check Token Ownership

Impact Low

www.hacken.io
23



Likelihood Low

The Lending solution allows for borrowing the lending token with the
collateral in the form of a valuable NFT token. The NFT token is
transferred to the Lending contract within the acceptLoan() function.
This functionality assumes that the selected NFT token implements
OpenZepplin’s IERC721 interface and the safeTransferFrom() function,
which requires implementation of the onERC721Received() hook, if the
recipient is a smart contract.

The Lending contract implements the onERC721Received() hook, however
it does not process the hook’s input data, to verify whether the NFT
token was indeed transferred by checking the ownership.

function onERC721Received(address, address, uint256, bytes calldata) external

pure returns (bytes4) {

return IERC721Receiver.onERC721Received.selector;

}

Path: ./contracts/contract.sol: onERC721Received()

Recommendation: It is recommended to verify whether upon calling the
hook the NFT with provided token Id is indeed owned by the Lending
contract.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: The requestLoan() function now implements additional
assertion that enforces the NFT collateral to implement the IERC721
interface, to ensure that it is compliant with ERC721. Checking the
ownership of NFT by means of the ownerOf() function was considered
not optimal, as it relies on another ERC721 functionality.

L04. FeeReductionFactor Can Be Set to 0

Impact Medium

Likelihood Low

The Lending solution applies multiple various fees during loan
repayment including OriginationFee. The OriginationFee is scaled
based on the OriginationFeeRanges and the feeReductionFactor.
However, it was identified that feeReductionFactor lacks any input
validation and can be mistakenly set to 0 value. In case of such an
event, the getOriginationFee() function call may revert due to an
attempt of division by zero operation. The getOriginationFee()

www.hacken.io
24



function is used directly by the repayLoan() and liquidateLoan()
functions. Eventually, it may prevent loan repayment or liquidation.

function setFeeReductionFactor(uint256 _factor) external onlyOwner {

feeReductionFactor = _factor;

}

function getOriginationFee(uint256 _amount) public view returns (uint256) {

uint256 originationFee = baseOriginationFee;

for (uint256 i = 0; i < originationFeeRanges.length; i++) {

if (_amount < originationFeeRanges[i]) {

break;

} else {

originationFee = (originationFee * PRECISION) / feeReductionFactor;

}

}

return (_amount * originationFee) / 100 / PRECISION;

}

Path: ./contracts/contract.sol: setFeeReductionFactor()

Recommendation: It is recommended to implement input validation
within the setFeeReductionFactor() function.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: The fee reduction factor cannot be set now below the
PRECISION constant, which is equal to 10000.

L05. OriginationFeeRanges Collection Lacks Input Validation

Impact Medium

Likelihood Low

The Lending solution applies multiple various fees during loan
repayment including OriginationFee. The OriginationFee is scaled
based on the OriginationFeeRanges and the feeReductionFactor.
However, it was identified that the OriginationFeeRanges collection
lacks any input validation and can be mistakenly set to incorrect
values. In case of such an event, the getOriginationFee() function
call may return an incorrect value, e.g. without application of a
reduction factor.

www.hacken.io
25



function setRanges(uint256[] memory _originationFeeRanges) public onlyOwner {

originationFeeRanges = _originationFeeRanges;

}

function getOriginationFee(uint256 _amount) public view returns (uint256) {

uint256 originationFee = baseOriginationFee;

for (uint256 i = 0; i < originationFeeRanges.length; i++) {

if (_amount < originationFeeRanges[i]) {

break;

} else {

originationFee = (originationFee * PRECISION) / feeReductionFactor;

}

}

return (_amount * originationFee) / 100 / PRECISION;

}

Path: ./contracts/contract.sol: setRanges()

Recommendation: It is recommended to implement input validation
within the setRanges() function, such that the provided values must
be in ascending order.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: The origination fee ranges have now implemented input
validation. At least one record must be provided, but no more than
six. The record must be non-zero value. Values must be provided in
ascending order.

L06. ERC20 Zero Amount Transfers Possible

Impact Low

Likelihood Low

The Lending solution applies multiple various fees during loan
repayment or liquidation. When transferring fees, it is possible to
have fees equal to zero, causing unnecessary ERC20 transfers to be
executed.

The fee can be equal to zero if the combination of following
conditions are true:

www.hacken.io
26



● The protocol fee is set to 0.
● The grace fee is set to 0.
● The base origination fee is set to 0.
● The liquidation fee is set to 0.

Although ERC20 zero amount transfers are usually possible, it does
not add any value to the protocol.

Path: ./src/Lending.sol : repayLoan(), liquidateLoan().

Recommendation: It is recommended to check whether the fee is greater
than zero before transfer and skip it otherwise.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: The platform fee transfer is now skipped if it is equal
to zero.

Informational

I01. NFT Tokens Are Not Whitelisted

The Lending solution allows for borrowing the lending token with the
collateral in the form of a valuable NFT token. The lending token
must be firstly whitelisted by the solution owner. In contrast, the
NFT token used for collateral is not whitelisted. Still, to use any
NFT it must be firstly evaluated and pre-set within the IPriceIndex
contract. Thus, it can be considered as indirect whitelisting,
however, this configuration depends on the third party smart
contract, which can be considered as a deviation from the leading
security standards.

Path: ./contracts/contract.sol : requestLoan()

Recommendation: It is recommended to consider implementation of NFT
tokens whitelisting that can be used within the Lending solution.

Found in: 6460ac1

Status: Mitigated (Revised commit: 7c2e10)

Remediation: The solution now implements the NFT blacklisting. The
solution owner can disallow the use of a particular NFT from
collection as a collateral. Implementing blacklisting over
whitelisting is considered a deviation from the leading security
standard, thus, the finding is perceived as Mitigated.

I02. Inconsistent Usage of PRBMath Library

The Lending solution allows lender to lend an amount of tokens to the
borrowers, which should be paid off within the time of loan duration
or grace period. During this time the interest is accrued and various
fees are applied. To calculate the debt amount the

www.hacken.io
27



getDebtWithPenalty() function is used, which uses PRBMath’s UD60x18
struct and related functions for calculations.

function getDebtWithPenalty(

uint256 _borrowedAmount,

uint256 _apr,

uint256 _loanDuration,

uint256 _repaymentDuration

) public pure returns (uint256) {

if (_repaymentDuration > _loanDuration) {

_repaymentDuration = _loanDuration;

}

UD60x18 accruedDebt = convert((_borrowedAmount * _apr * _repaymentDuration)

/ SECONDS_IN_YEAR / 100 / PRECISION);

UD60x18 penaltyFactor = convert(_loanDuration -

_repaymentDuration).div(convert(_loanDuration));

return convert(accruedDebt.add(accruedDebt.mul(penaltyFactor)));

}

In contrast, getOriginationFee(), getLiquidationFee() and grace fee
do not use any additional math library for calculations.

function getLiquidationFee(uint256 _borrowedAmount) public view returns (uint256)

{

return (_borrowedAmount * liquidationFee) / PRECISION;

}

No specific vulnerability was identified due to this fact, however,
the finding was reported to drag attention of the development team to
the subject matter.

Path: ./contracts/contract.sol: getDebtWithPenalty(),
getOriginationFee(), getLiquidationFee(), repayLoan().

Recommendation: It is recommended to consider implementing the usage
of PRBMath’s UD60x18 struct and related functions across the
solution.

Found in: 6460ac1

Status: Mitigated (Revised commit: 7c2e10)

Remediation: Both the getDebtWithPenalty() function and the
getOriginationFee() function are using UD60x18 struct for arithmetic
operations. The getLiquidationFee() function and grace fee still do
not use it.

www.hacken.io
28



I03. Floating Pragma

The Lending solution has floating pragma set to ^0.8.19.

Contracts should be deployed with the same compiler version and flags
that they have been tested with thoroughly. Locking the pragma helps
to ensure that contracts do not accidentally get deployed using, for
example, an outdated compiler version that might introduce bugs that
affect the contract system negatively.

Paths: ./src/Lending.sol; ./src/IPriceIndex.sol.

Recommendation: It is recommended to lock the pragma version in all
contracts to one of the newest compiler versions, considering all
publicly known bugs related to such version.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: The pragma version is now locked on 0.8.19.

I04. Solidity Style Guide Violation

Contract readability and code quality are influenced significantly by
adherence to established style guidelines. In Solidity programming,
there exist certain norms for code arrangement and ordering. These
guidelines help to maintain a consistent structure across different
contracts, libraries, or interfaces, making it easier for developers
and auditors to understand and interact with the code.

The suggested order of elements within each contract, library, or
interface is as follows:

● Type declarations
● State variables
● Events
● Modifiers
● Functions

Functions should be ordered and grouped by their visibility as
follows:

● Constructor
● Receive function (if exists)
● Fallback function (if exists)
● External functions
● Public functions
● Internal functions
● Private functions

Within each grouping, view and pure functions should be placed at the
end.

www.hacken.io
29



Furthermore, following the Solidity naming convention and adding
NatSpec annotations for all functions are strongly recommended. These
measures aid in the comprehension of code and enhance overall code
quality.

Path: ./src/Lending.sol.

Recommendation: Consistent adherence to the official Solidity style
guide is recommended. This enhances the readability and
maintainability of the code, facilitating seamless interaction with
the contracts. Providing comprehensive NatSpec annotations for
functions and following Solidity's naming conventions further enrich
the quality of the code.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: The code is now rearranged to adherence the style
guidelines.

I05. Functions that Should Be External

Public functions that are not called from inside the contract should
be declared external.

Path: ./src/Lending.sol : setRanges().

Recommendation: Consider changing the function visibility to
external.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

Remediation: The aforementioned function is now set to external.

I06. Constant Accuracy Mismatch

The SECONDS_IN_YEAR constant is set to 360 days instead of 365, which
might have an unintentional impact on the interest calculations.

uint256 private constant SECONDS_IN_DAY = 3600 * 24;

Path: ./src/Lending.sol: SECONDS_IN_YEAR

Recommendation: It is recommended to consider setting the
SECONDS_IN_YEAR constant to 365 instead of 360 days.

Found in: 6460ac1

Status: Fixed

www.hacken.io
30



Remediation: The client’s team uses 360 valu intentionally. It is
explained in the FAQ that the Annual Percentage Rates (APR) is
calculated on a 30/360 year basis.

I07. Gas Optimisation Possible in for Loops

In Solidity version 0.8 and above, arithmetic operations
automatically include checks for underflows and overflows. Although
these checks are useful for preventing calculation errors, they
consume additional Gas, leading to higher transaction costs.

In scenarios where underflows and overflows are not possible, the
additional checks introduced by Solidity 0.8 can be bypassed to save
Gas. This can be done by placing the increment or pre-increment
operation inside an unchecked{} block. This block enables developers
to perform arithmetic operations without the automatic underflow and
overflow checks, thus conserving Gas when they are not needed.

It is a well-known fact that pre-increment ++i costs less Gas than
increment i++ operator.

Additionally, the loops in the provided code snippets read the length
of the array stored in storage, which is expensive as opposed to the
situation when the length is once set to the memory variable and read
from it every single loop iteration.

function _setLoanTypes(uint256[] memory _durations, uint256[] memory

_interestRates) internal {

require(_durations.length == _interestRates.length, "Lending: invalid

input");

for (uint256 i = 0; i < _durations.length; i++) {

require(_interestRates[i] <= MAX_INTEREST_RATE, "Lending: cannot be

more than max");

aprFromDuration[_durations[i]] = _interestRates[i];

}

}

Path: ./src/Lending.sol: setTokens(), unsetTokens(),
unsetLoanTypes(), getOriginationFee(), _setLoanTypes().

Recommendation: It is recommended to optimize the code by creating
memory variables to store the length of the loop.

It is recommended to use a pre-increment operator inside an
unchecked{} block for Gas optimization inside loops.

Found in: 6460ac1

Status: Fixed (Revised commit: 7c2e10)

www.hacken.io
31

https://docs.lucidao.com/dapps/altr-lending/faq


Remediation: All for loops are now optimized in terms of Gas
consumption.

www.hacken.io
32



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the
Consultant cannot guarantee the explicit security of the audited smart
contracts.

www.hacken.io
33



Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

www.hacken.io
34



Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

www.hacken.io
35



Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/lucidao-developer/altr-lending-smart-contracts

Commit 6460ac162c704536adda75151f177cba22b7aa3c

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts File: IPriceIndex.sol
SHA3: 40f7cefdf63d2d1349397fc38259aee0d248693f09d48c4f4b9c73acc17abb45

File: Lending.sol
SHA3: 2fed985cb1e63c7b8731057fb9fd7dbca32fe0393182e719b1c0ea3990fc352c

Second review scope

Repository https://github.com/lucidao-developer/altr-lending-smart-contracts

Commits 7c2e10859755e1708e0c50beedbe3f8e77b845f5,
b1af058882db27d270eac22d69361a01ab0795e2

Whitepaper Link

Requirements Link

Technical
Requirements Link

Contracts 7c2e108:
File: IAllowList.sol
SHA3: 1fe2204d6da4f730a3d02c191c8de859404db463ef69a5fb2ebd267bb413271c

File: IPriceIndex.sol
SHA3: 01e616deecb7ed5a2874f008e21e5e524ad93a109457ac4b268d0cb795907fe3

File: Lending.sol
SHA3: 8108ece86068f784af85b12310b8803421ba31d0c75faa60289eb3cb8fc053d8

b1af05:
File: Lending.sol
SHA3: 91686010c6478c5d53bdafdc65e998840c10d42ec8a87c61e38c5f4225755aff

www.hacken.io
36

https://github.com/lucidao-developer/altr-lending-smart-contracts
https://storage.lucidao.com/51d374ec-06bd-4bc4-b296-40513052fbe0-bucket/lucidao-whitepaper-1.0.pdf
https://storage.lucidao.com/51d374ec-06bd-4bc4-b296-40513052fbe0-bucket/lucidao-whitepaper-1.0.pdf
https://github.com/lucidao-developer/altr-lending-smart-contracts#readme
https://github.com/lucidao-developer/altr-lending-smart-contracts
https://storage.lucidao.com/51d374ec-06bd-4bc4-b296-40513052fbe0-bucket/lucidao-whitepaper-1.0.pdf
https://storage.lucidao.com/51d374ec-06bd-4bc4-b296-40513052fbe0-bucket/lucidao-whitepaper-1.0.pdf
https://github.com/lucidao-developer/altr-lending-smart-contracts#readme

